

Risks and Benefits of Consumer Nicotine Delivery Systems

Welcome to the 2024, 27th Nicotine and Tobacco Conference 💡 NTSC

THEME THIS YEAR:

Risks and Benefits of Consumer Nicotine Delivery Systems: Emerging Evidence and Open Questions

NI	COTINE	
SA	FETY	
AN	D	
То	XICITY	
Editei	D BY	
NEA	L L. BENOWITZ	

August 1998

...and behind the curtain the real work gets done, so we need to thank...

- Avery Roberson
- Zack Olson
- Courtney Usher
- Michelle Forster
- Asia Abad

Adrian 5-days old today

- Nicotine as a replacement therapy:
 - Smoking cessation
 - Possibly for long-term maintenance of non-smoking
- Potential vs. medical disorders:
 - Ulcerative colitis, Alzheimer's disease, Parkinson's disease, Tourette's syndrome, attention deficit disorder, spasticity, and sleep apnea

- 2009: Congress integrates tobacco harm reduction into FDA umbrella (FDA-CTP)
- 2009-2024: Wide array of consumer nicotine products developed
- 2024: Tobacco harm reduction remains controversial
 - Risks and harms?
 - Benefits?
 - Short-term and long-term impacts?
- NTSC 2024: We hope to update the science on the risk and benefits of nicotine in different user groups including adults who smoke and non-smoking youth

Moderator: Neal Benowitz Session 2: Safety and Toxicity of Nicotine Delivery Devices

A) Nicotine Pharmacology and Safety Concerns

VUSC

B) Cardiovascular Toxicity of Nicotine: Implications for Harm Reduction

2. Suchitra Krishnan-Sarin Yale University **Youth Addiction and Mental Health**

3. Michael Ussher	Vaping During Pregnancy: A Systematic
University of London	Review of Health Outcomes

4. Steve Cook	The Past is Prologue: Epidemiology of
University of Michigan	Exposure and Harm
5. Cindy Chang	Biomarkers of Potential Harm
FDA-CTP	by Tobacco Product Use
6. Panel Discussion	Kevin Gray MUSC Jed Rose Rose Research Center Ted Wagener Ohio State

Session 2: Safety and Toxicity of Nicotine Delivery Devices

Suchitra Krishnan-Sarin

Yale University

Youth Addiction and Mental Health

NTSC

202

Youth Nicotine Delivery Device Use: Addiction and Mental Health

Suchitra Krishnan-Sarin, PhD

Albert E. Kent Professor of Psychiatry, and Public Health Yale University

Relevant Funding and Disclosures

Yale TCORS (Tobacco Center Of Regulatory Science)

U50DA036151; Krishnan-Sarin/O'Malley, PI)

ENACT (End Nicotine Addiction in Children and Teens) Initiative

20YVNR35460041; Krishnan-Sarin, PI)

National Institute on Drug Abuse

No relevance to current work : Free investigational drug from Novartis, Stalicla for alcohol drinking research;

Mental Health vs. Mental Health Disorders

Mental Health and Wellness

Cognitive, Behavioral, Emotional Wellbeing

Internalizing symptoms

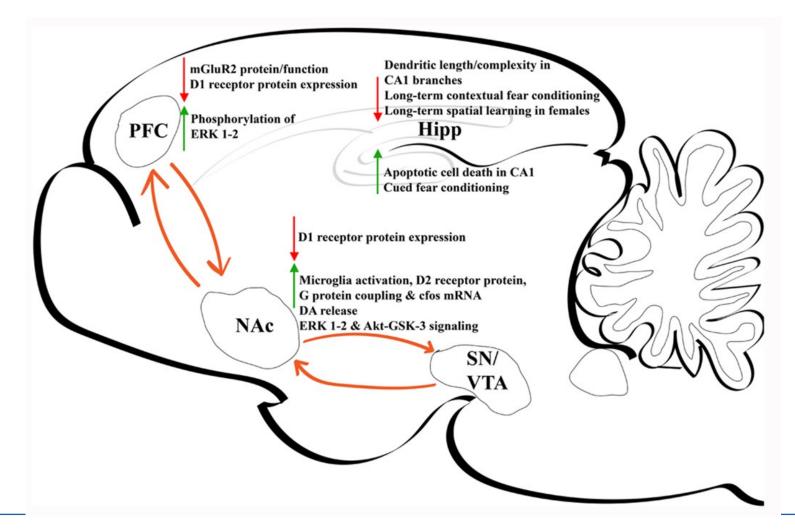
Anxiety and depressive symptoms, somatic complaints, Social withdrawal, hopelessness, fearfulness.

•Externalizing symptoms

Impulsivity, hyperactivity, rule breaking, risk taking, aggression

Mental Health Disorders

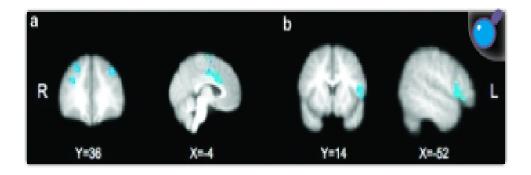
Diagnosed conditions that influence mood, health, behaviors


Nicotine & Adolescence: Preclinical findings

Leslie, 2020; Castro, Lotfipour, Leslie, 2023; Yuan, Cross, Loughlin, Leslie, 2015

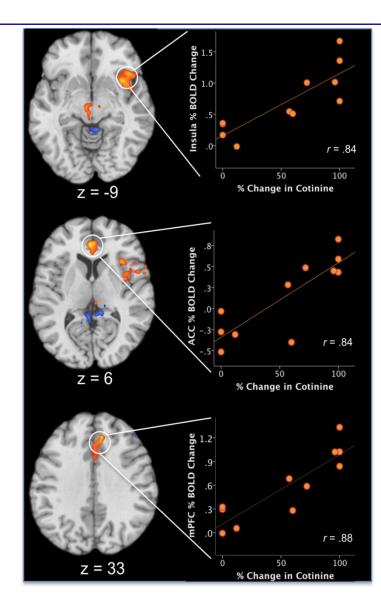
- Chronic nicotine exposure during adolescence
 - Substance Use
 - Greater sensitivity to, and use of alcohol, cannabis, cocaine
 - \circ Cognition
 - Changes in cognition; for example, decreased contextual fear learning
 - \circ Mood
 - Increases in anxiety and depression like behaviors.
 - Emotional Regulation
 - Neuronal and molecular alterations in regions critical for emotional regulation
- Adolescents vs Adults
 - Adolescents more sensitive to nicotine's acute behavioral effects, reward, anxiogenic effects
 - Adults more sensitive to nicotine's aversive effects and have more nicotine withdrawal

Nicotine Changes the Adolescent Brain: Preclinical findings


Castro, Lotfipour, Leslie, 2023

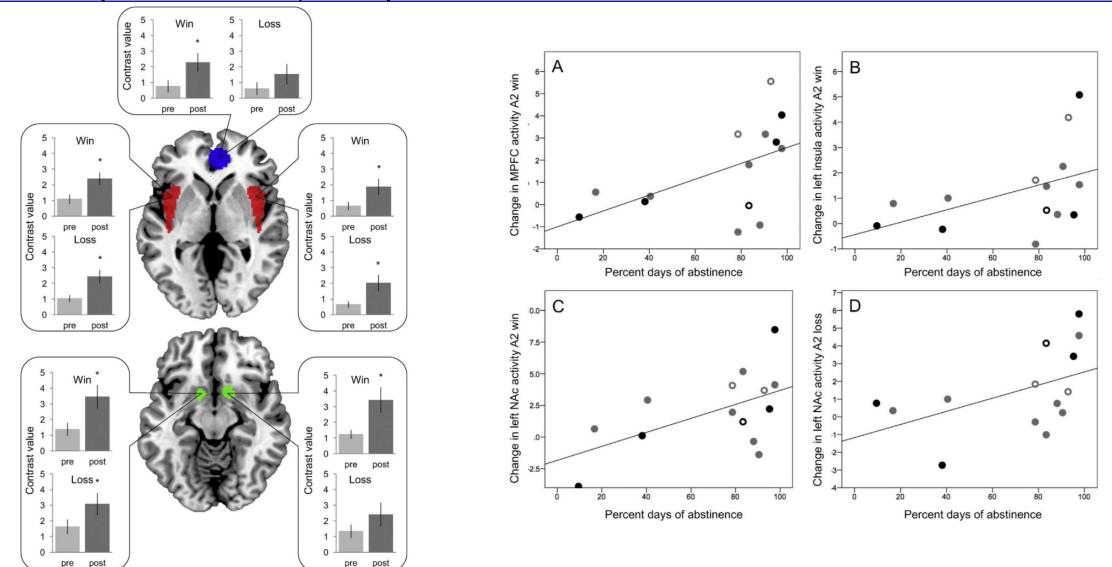
- Nicotine exposure changes
- In neurochemical system s in prefrontal cortex, nucleus accumbens, substantia nigra, ventral tegmental area (nACH, DA, GABA, Glutamate)
- In pruning and growth (e.g. white vs. grey matter), and neuronal connections

Nicotine & Response Inhibition: Adolescent Smoking vs. Not


Adolescent heavy smokers. Vs nonsmokers, had lower neural activation in cortical regions in response to a Stop-Signal task (Galvan, Poldrack, Baker, McGlennen, London, 2011)

Heaviness of Smoking Index and neural activation. In smokers, HSI was negatively correlated with left and right MFG (x=-34, y=36, z=38; x=30, y=36, z=44), cingulate gyrus (x=0, y=14, z=28), supplementary motor cortex (x=0, y=-2, z=62), orbitofrontal cortex (x=-26, y=56, z=2), and right superior frontal gyrus (x=24, y=-2, z=66) in the Successful Stop>Baseline contrast (a), and with left IFG (x=-52, y=14, z=14) in the Successful Stop>Go contrast (b). There were no significant correlations with the Successful Stop>Unsuccessful Stop contrast.

Nicotine & Cognitive Interference & Abstinence: Adolescent Smokers


Stroop-related cognitive efficiency improves with abstinence (Krishnan-Sarin et al., 2013; Yip et al., 2016)

Greater percent drop in cotinine levels at EOT abstinence was positively correlated with Stroop-related reductions in anterior cingulate and insula suggesting improved cognitive efficiency with abstinence.

Nicotine & Reward & Abstinence: Adolescent Smokers

Blunted response to non-drug rewards improves following treatment and is correlated with abstinence (Garrison et al., 2017)

pre

pre

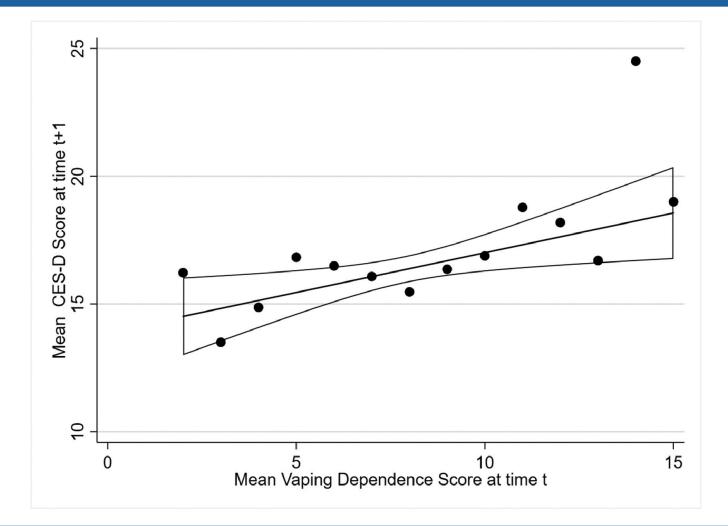
Tobacco Initiation in Children: Changes in Neurocognitive Performance and Cortical Area

Dai, Doucet, Wang, Puga, Samson, Xiao, Khan, 2022

- ABCD; Wave 1: 2016-2018; Wave 2: 2018-2021
- 11 729 participants at wave 1 (9.9 [0.6] years old)
- 116 children reported ever use of tobacco products at wave 1.
 - 80 use of e-cigarettes or cigarettes.
 - \circ 10 cigars
 - 12 smokeless tobacco
 - 5 pipes
 - 8- nicotine replacement
- Initiating tobacco use in late childhood was associated
 - Lower general cognitive performance with sustained effects at 2-year follow-up.
 - Lower cortical volume (frontal, parietal, temporal) cortices with sustained effects at 2-year follow up

E-cigarette & Youth: Depressive symptoms

Moustafa, Testa, Rodriguez, Pianin, Audrain-McGovern, 2021


	E-cigarette use							
	Baseline level				Linear trend			
	b	SE	z-value	p-value	b	SE	z-value	p-value
Baseline depression					0.01	0.00	4.26	< 0.0001
Sex	-0.04	0.08	-0.56	0.57	0.00	0.03	0.04	0.97
Black race	-0.05	0.11	-0.45	0.66	-0.14	0.05	-2.87	0.004
Other race	-0.05	0.13	-0.36	0.72	-0.09	0.05	-1.76	0.08
Ethnicity	-0.24	0.09	-2.58	0.01	0.08	0.04	2.28	0.02
Peer e-cigarette use	0.17	0.02	9.09	<0.0001	-0.02	0.01	-2.49	0.01
Household e-cigarette use	0.19	0.10	1.90	0.06	-0.07	0.04	-1.69	0.09
Marijuana use	0.54	0.10	5.30	<0.0001	0.05	0.05	0.97	0.33
Alcohol use	0.23	0.09	2.46	0.02	0.13	0.04	2.89	0.004
Positive expectations	0.12	0.01	9.78	<0.0001	0.01	0.01	-1.89	0.06
Cigarette smoking	0.31	0.05	5.77	<0.0001	-0.07	0.02	-2.78	0.005
Perceived benefits	0.10	0.01	1.14	0.25	0.01	0.01	0.45	0.66

Moustafa et al., 2021

- Greater depressive symptoms at age 14 (baseline) were significantly associated with an increase in the rate of e-cigarette use progression across 36 months
- E-cigarette use at baseline not significantly associated with depressive symptoms trend

E-cigarettes & Youth: Dependence & Depressive symptoms

Chaiton, Gan, Bondy, Cohen, Dubray, Eissenberg, Kaufman, Schwartz, 2023

Mean depression symptoms scores at subsequent 3-month follow-up by mean depressive symptom scores at previous survey among youth (aged 16–25 years) in Canada (N=1,226). CES-D, Center for Epidemiologic Studies Depression Scale

E-cigarettes and Other Tobacco Use

Soneji et al., 2017

Figure 2. Meta-analysis of Adjusted Odds of Cigarette Smoking Initiation Among Never Cigarette Smokers at Baseline and Ever e-Cigarette Users at Baseline Compared With Never e-Cigarette Users at Baseline.

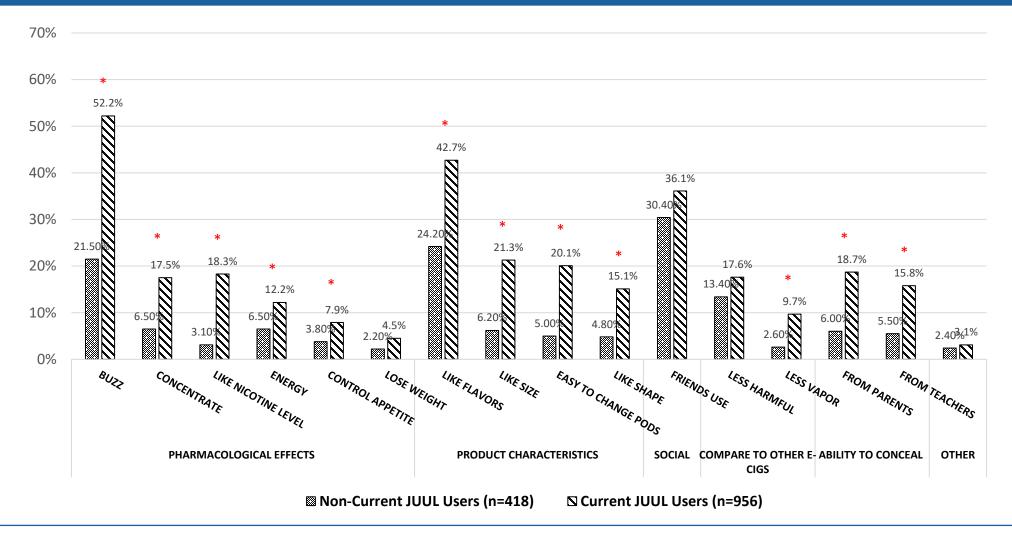
	Probability of Smoking Ini							
Source	Ever e-Cigarette Users	Never e-Cigarette Users	Unadjusted OR (95% CI)	Adjusted OR (95% CI)	Favors Smaller Increase in Odds		Favors Larger Increase in Odds	Weight, %
Miech et al, ¹⁰ 2017	31.1	6.8	6.23 (1.57-24.63)	4.78 (1.91-11.96)			• • •	11.1
Spindle et al, ⁹ 2017	29.4	10.6	3.50 (2.41-5.09)	3.37 (1.91-5.94)		-		18.1
Primack et al, ²² 2016	37.5	9.0	6.06 (2.15-17.10)	6.82 (1.65-28.22)				5.9
Barrington-Trimis et al, ⁸ 2016	40.4	10.5	5.76 (3.12-10.66)	6.17 (3.29-11.57)				16.6
Wills et al, ⁷ 2016	19.5	5.4	4.25 (2.74-6.61)	2.87 (2.03-4.05)				23.9
Primack et al, ⁶ 2015	37.5	9.6	5.66 (1.99-16.07)	8.30 (1.19-58.00)				3.5
Leventhal et al, ⁵ 2015	8.8	3.1	2.65 (1.73-4.05)	1.75 (1.10-2.78)				20.8
Total	23.2	7.2	3.83 (3.74-3.91)	3.50 (2.38-5.16)				100
Heterogeneity: $\tau^2 = 0.13$; $Q_6 = 1$ Test for overall effect: $z = 6.34$; t		=56%			1 2	3 4 OR (95% CI)	6 8 11	

The odds ratios (OR) for the studies 56789.10.22 are adjusted for a study-specific set of demographic, psychosocial, and behavioral risk factors. The size of the point estimate (black square) is proportional to the weight of the study in the random-effects meta-analysis model. The weights add to 99.9% and not 100% because of rounding. Q indicates Cochrane Q.

Figure 3. Meta-analysis of Adjusted Odds of Current (Past 30-Day) Cigarette Smoking at Follow-up Among Noncurrent Cigarette Smokers at Baseline and Current e-Cigarette Users at Baseline Compared With Noncurrent e-Cigarette Users at Baseline.

	Probability of Cigarette Sn	of Past 30-Day noking, %	1					
Source	Past 30-Day e-Cigarette Users	Non–Past 30-Day e-Cigarette Users	Unadjusted OR (95% CI)	Adjusted OR (95% CI)	Favors Smaller Increase in Odds		Favors Larger Increase in Odds	Weight, %
Unger et al, ²³ 2016	26.2	7.0	4.71 (2.27-9.77)	3.32 (1.55-7.11)				48.6
Hornik et al, ²⁴ 2016	19.0	2.0	11.18 (5.41-23.13)	5.43 (2.59-11.38)				51.4
Total	21.5	4.6	5.68 (3.49-9.24)	4.28 (2.52-7.27)				100
Heterogeneity: τ ² = 0 Test for overall effect			%		1 2	3 4 OR (95% CI)	6 8 11	

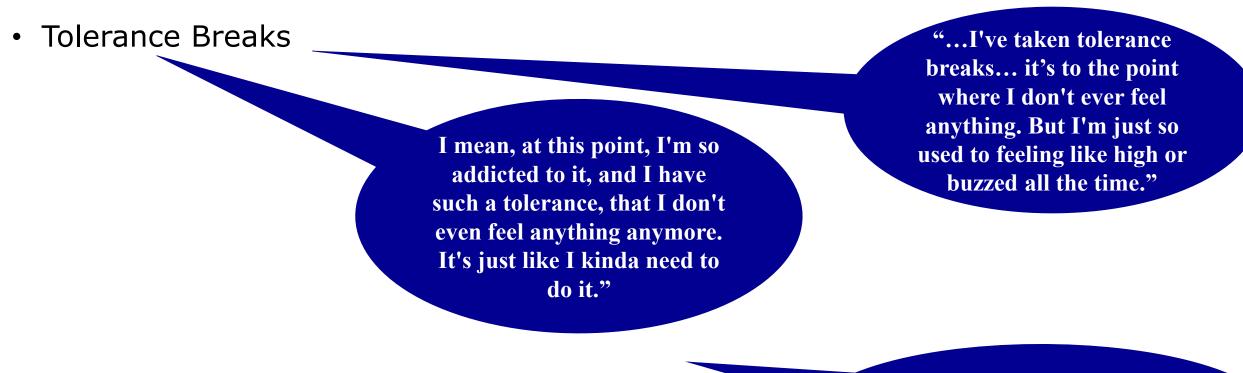
The odds ratios (OR) for the studies^{23,24} are adjusted for a study-specific set of demographic, psychosocial, and behavioral risk factors. The size of the point estimate (black square) is proportional to the weight of the study in the random-effects meta-analysis model.


E-cigarettes and Other Substances

Systematic review & meta-analysis: association between e-cigarette use and use of psychoactive substances in 10–24 yo youth Lau, Conti, Hemmati, Baldacchino, 2023

- Several longitudinal studies showed that ever e-cigarette users have an increased likelihood for subsequent use of other substances compared to never e-cigarette users.
- Some of these studies examined youth who reported use of e-cigarettes but no use of other substance (i.e. cannabis, alcohol) at the first wave.
 - Bentivegna et al., 2021 : PATH waves 1,2, 3.
 - Increased cannabis smoking (OR:2.55), cannabis vaping (OR:2.05), non-prescribed Ritalin (OR:2.13), polysubstance use (OR; 2.67)
 - Seidel et al., 2022: Prospective cohort from Germany 2017-2019
 - Increased rates of trying cannabis (ARR: 1.83)
 - Sun et al., 2022: PATH waves 4.5 and 5.
 - Increased rates of past 12-month (ARR: 2.57) and 30-day (ARR: 3.20) cannabis use.
 - Lozano et al., 2017: Longitudinal cohort from Mexico 2015-2017
 - No effect of only ecig use. Use of both ecigs and cigs at wave 1 increased rates of cannabis us.

E-cigarettes & Use/Addiction in Youth: Reason for use


Youth experience positive effects of nicotine Kong, Bold, Morean, Bhatti, Camenga, Jackson, Krishnan-Sarin 2019

Yale SCHOOL OF MEDICINE

E-cigarettes & Use/Addiction in Youth: Reasons for Use

Youth report tolerance & preoccupation with use (Bold et al., 2016; Kong et al., 2021)

Feeling preoccupied with obtaining e-cigarettes

"It's more just like you're kind of itching to hit a JUUL all the time.."

Yale school of medicine

E-cigarettes & Use/Addiction in Youth

Youth experience withdrawal symptoms and addiction (Bold et al., 2016; Kong et al., 2021

Addiction/Dependence

- Withdrawal symptoms
 - Negative emotions (e.g., anxious, angry, agitated)
 - $_{\circ}$ Increased cravings
 - Negative physical symptoms (e.g., headaches)
 - $_{\circ}\,$ Trouble focusing

I mean, honestly, in my opinion, I don't really get anything out of it. It's mainly just like a buzz, and then like for the rest of the day I'm just kind of like stuck on doing it... like it's just an addiction that I'm trying to quit. I mean, at this point, I'm so addicted to it, and I have such a tolerance, that I don't even feel anything anymore. It's just like I kinda need to do it."

Nicotine, it's like, at the beginning, you had it [a buzz], and now it's just like your stuck. Like, you're not doing it for the pleasure of doing it, you're doing it because you feel like you have to.

E-cigarette Dependence in Youth (PROMIS Measure)

Morean, Krishnan-Sarin, O'Malley, 2018

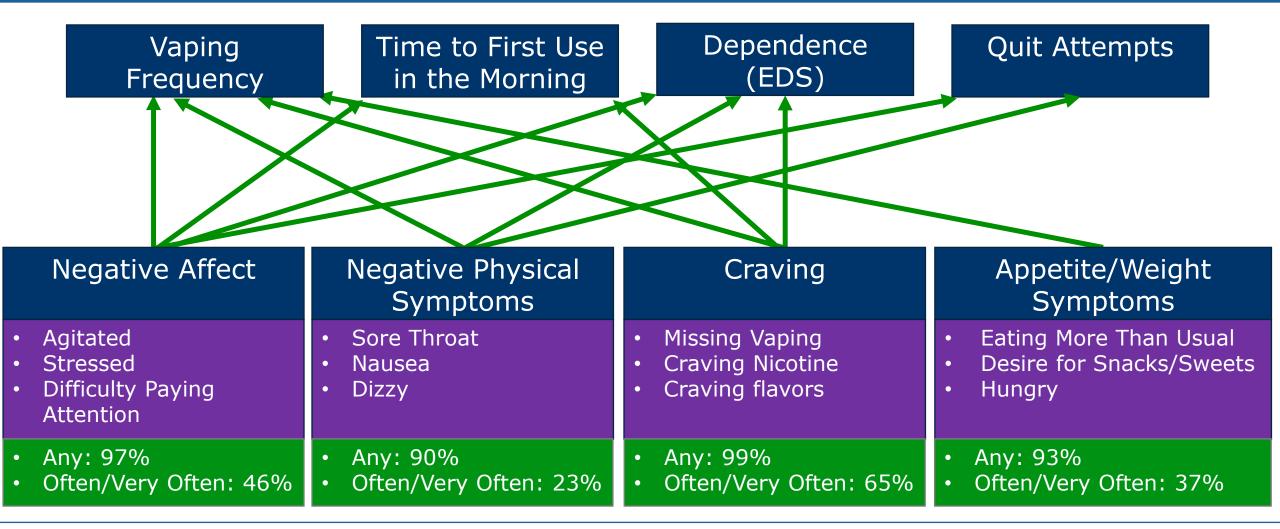
- 1. When I haven't been able to vape for a few hours, the craving gets intolerable.
- 2. I drop everything to go out and get e-cigarettes or e-liquid/juice.
- 3. I vape more before going into a situation where vaping is not allowed.
- 4. I find myself reaching for e-cigarettes/a vape without thinking about it.

997 participants ages 13-20 years who self-reported using vaping nicotine 4+ days/week

E-cigarette Dependence

- Any: 98.5%
- Sometimes Very Often: 65.2%
- Often Very Often: 31.8%

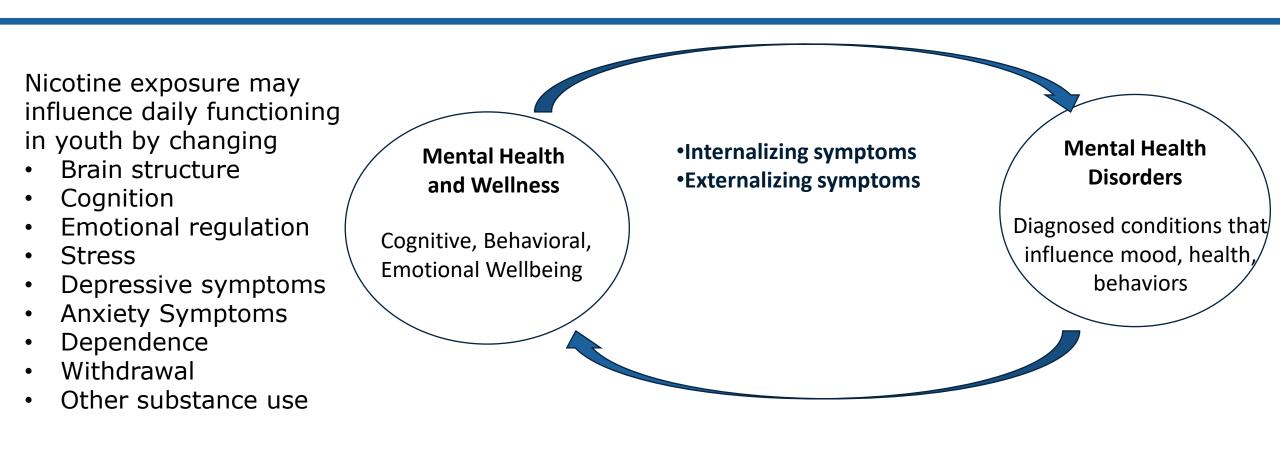
E-cigarette Withdrawal in Youth


Morean, Rajeshkumar, Krishnan-Sarin, 2024

- Develop measure: Lit review, subject matter experts, cognitive interviews
- Validate measure: Survey with 997 youth and young adults ages 13-20 years who reported vaping nicotine 4 or more days/week

Negative Affect	Negative Physical Symptoms	Craving	Appetite/Weight Symptoms
 Agitated Stressed Difficulty Paying Attention 	Sore ThroatNauseaDizzy	 Missing Vaping Craving Nicotine Craving flavors 	 Eating More Than Usual Desire for Snacks/Sweets Hungry
Any: 97%Often/Very Often: 46%	Any: 90%Often/Very Often: 23%	Any: 99%Often/Very Often: 65%	Any: 93%Often/Very Often: 37%

E-cigarette Withdrawal in Youth


Morean, Rajeshkumar, Krishnan-Sarin, 2024

Covariates: sex, age, ethnicity, race, SES, daily nicotine vaping, past-month use of other tobacco products

Yale school of medicine

Mental Health vs. Mental Health Disorders

Relevant Funding and Disclosures

Yale TCORS (Tobacco Center Of Regulatory Science)

U50DA036151; Krishnan-Sarin/O'Malley, PI)

ENACT (End Nicotine Addiction in Children and Teens) Initiative

20YVNR35460041; Krishnan-Sarin, PI)

National Institute on Drug Abuse

No relevance to current work : Free investigational drug from Novartis, Stalicla for alcohol drinking research;